Abstract

We presented three-dimensional image including reflectivity and depth image of a target with two traditional optical imaging systems based on time-correlated single photon counting technique (TCSPC), when it was illuminated by a MHz repetition rate pulsed laser source. The first one is bi-static system of which transmitted and received beams path are separated. Another one called mono-static system of which transmit and receive channels are coaxial, so it was also named by transceiver system. Experimental results produced by both systems showed that the mono-static system had more advantages of less noise from ambient light and no limitation about field area of view. While in practical applications, the target was far away leading to there were few photons return which was prejudicial to build 3D images with traditional imaging system. Thus an advanced one named first photon system was presented. This one was also a mono-static system on hardware system structure, but the control system structure was different with traditional transceiver system described in this paper. The difference was that the first return photon per pixel was recorded across system with first photon system, instead of overall return photons per pixel. That’s to say only one detected return photon is needed for per pixel of this system to rebuild 3D images of target with less energy and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.