Abstract

A polymer microtip manufactured at the end of a multi-mode optical fiber by using the photopolymerization process offers good reflective properties, therefore, it is applicable as an optical fiber sensor micro-transducer. The reflective properties of this microelement depend on the monomer mixture used, optical fiber type, and light source initiating polymerization. Experimental results have shown that a proper selection of these parameters has allowed the design of a new class of sensing structure which is sensitive to the refractive index (RI) changes of a liquid medium surrounding the microtip. An optical backscatter reflectometer was applied to test a group of micro-transducers. They were manufactured from two monomer mixtures on three different types of multi-mode optical fibers. They were polymerized by means of three optical light sources. Selected micro-transducers with optimal geometries were immersed in reference liquids with a known RI within the range of 1.3–1.7. For a few sensors, the linear dependences of return loss and RI have been found. The highest sensitivity was of around 208 dB/RIU with dynamic 32 dB within the range of 1.35–1.48. Sensing characteristics have minima close to RI of a polymer microelement, therefore, changing its RI can give the possibility to tune sensing properties of this type of sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.