Abstract

Optical limiters transmit low-level radiation while blocking electromagnetic pulses with excessively high energy (energy limiters) or with excessively high peak intensity (power limiters). A typical optical limiter absorbs most of the high-level radiation which can cause its destruction via overheating. Here we introduce the novel concept of a reflective energy limiter which blocks electromagnetic pulses with excessively high total energy by reflecting them back to space, rather than absorbing them. The idea is to use a defect layer with temperature dependent loss tangent embedded in a low-loss photonic structure. The low energy pulses with central frequency close to that of the localized defect mode will pass through. But if the cumulative energy carried by the pulse exceeds certain level, the entire photonic structure reflects the incident light (and does not absorb it!) for a broad frequency window. The underlying physical mechanism is based on self-regulated impedance mismatch which increases dramatically with the cumulative energy carried by the pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.