Abstract

Most reflective LCDs so far proposed require a very thin cell gap of approximately 1.5μm to satisfy the quarter-wave retardation condition when used with a half-wave retardation film to obtain an acceptable broadband performance over the entire visible range. On the other hand, the inevitable difficulty associated with precise manufacturing of thin cell gap devices is likely to deteriorate the yield, thereby increasing the production cost. This paper proposes a reflective LCD with a larger cell thickness to achieve better productivity. The proposed reflective LCD consists of a tactically arranged stack of a half-wave retardation film, a quarter-wave retardation film, and a liquid-crystal (LC) layer whose optical performance has been confirmed both by simulation and experiment. The optimal optical configuration to obtain an excellent dark state in the visible range was determined by the Mueller matrices calculus as applied to each optical component. The simulated and experimental results showed that the proposed reflective LC structure has excellent electro-optical properties and is expected to be useful for the next generation LCD industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call