Abstract

We report on the development of highly reflective back contacts (RBCs) made of multilayer stacks for ultrathin CIGS solar cells. Two architectures are compared: they are made of a silver mirror coated either with a single layer of In2O3:Sn (ITO) or with a bilayer of ZnO:Al/ITO. Due to the improvement of CIGS rear reflectance, both back contacts result in a significant external quantum efficiency enhancement, in agreement with optical simulations. However, solar cells fabricated with Ag/ITO back contacts exhibit a strong shunting behavior. The key role of the ZnO:Al layer to control the morphology of the top ITO layer and to avoid silver diffusion through the back contact is highlighted. For a 500-nm-thick CIGS layer, this optimized RBC leads to a best cell with a short-circuit current of 27.8 mA/cm2 (+2.2 mA/cm2 as compared to a Mo back contact) and a 12.2%-efficiency (+2.5% absolute).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call