Abstract
Let G = < a, b, … | r = 1 > be a one-relator group equipped with at least two generators. For all w which do not commute with r in the ambient free group on the generators a, b, …, the groups G(r,w) = < a,b, … | r r w = r 2 > are not residually finite and have the same finite images as G. The existence of this family of one-relator groups which are not residually finite reinforces what is becoming more obvious with time, that one-relator groups can be extremely complicated. This not only serves to underline the complexity of one-relator groups but provides us with the opportunity to raise a number of problems about these groups in the hope that they will stimulate further work on the conjugacy and isomorphism problems for one-relator groups as a whole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.