Abstract

We discuss the dynamics of expanding bubble walls in the presence of massive dark photons whose mass changes as they cross the wall. For sufficiently thin walls, we show that there exists a transient kinematic regime characterized by a constant reflection probability of longitudinal — but not transverse — modes. This effect can have important implications for the dynamics of expanding vacuum bubbles in the early Universe. Most notably, it leads to a new source of pressure on the expanding interface, featuring a non-monotonic dependence on the γ-factor of the bubble walls and reaching a peak at intermediate γ-factors that we dub Maximum Dynamic Pressure. When this pressure is large enough to halt the acceleration of the bubble walls, the difference in vacuum energy densities goes into making a fraction of the dark photons relativistic, turning them into dark radiation. If the dark radiation remains relativistic until late times, an observable contribution to ∆Neff is possible for phase transitions with strength α ∼ 10−2− 10−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.