Abstract
The asymptotic-impedance wedge solution for plane-wave illumination at normal incidence is examined for interior wedge diffraction. An efficient method for calculating the diffraction coefficient for arbitrary wedge angle is presented, as previous calculations were very difficult except for three specific wedge angles for the uniform geometrical theory of diffraction (UTD) expansion. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, surface wave, and associated surface wave transition fields. Multiply reflected fields of any order are considered. The multiply reflected fields from the exact solution arise as ratios of auxiliary Maliuzhinets functions; however, by using properties of the Maliuzhinets functions, this representation can be reduced to products of reflection coefficients which are much more efficient for calculation. A surface-wave transition field is added to the surface wave boundaries. Computations are presented for interior wedge diffractions although the formulation is equally valid for both exterior and interior wedges with uniform but different impedances on each face for both soft and hard polarizations. In addition, the accuracy of the high-frequency asymptotic expansion is examined for small diffraction distances by direct comparison of the exact and asymptotic solutions. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.