Abstract
Accurately quantifying thin-layer parameters by applying a targeted reflection waveform inversion methodology to ground-penetrating radar (GPR) reflection data may provide a useful tool for near-surface investigation and especially for contaminated site investigation where nonaqueous phase liquid (NAPL) contaminants are present. We implemented a targeted reflection waveform inversion algorithm to quantify thin-layer permittivity, thickness, and conductivity for NAPL thin ([Formula: see text] dominant wavelength [Formula: see text]) and ultrathin ([Formula: see text]) layers using GPR reflection data. The inversion used a nonlinear grid search with a Monte Carlo scheme to initialize starting values to find the global minimum. By taking a targeted approach using a time window around the peak amplitude of the reflection event of interest, our algorithm reduced the complexity in the inverse problem. We tested the inversion on three different synthetic data sets and four field data sets. In all testing, the inversion solved for NAPL-layer properties within 15% of the measured values. This algorithm provides a tool for site managers to prioritize remediation efforts based on quantitative assessments of contaminant quantity and location using GPR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.