Abstract

Strong reflection principles with the reflection cardinal $\leq\aleph_1$ or $<2^{\aleph_0}$ imply that the size of the continuum is either $\aleph_1$ or $\aleph_2$ or very large. Thus, the stipulation, that a strong reflection principle should hold, seems to support the trichotomy on the possible size of the continuum. In this article, we examine the situation with the reflection principles and related notions of generic large cardinals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.