Abstract

We study functions f : (a,b) ---> R on open intervals in R with respect to various kinds of positive and negative definiteness conditions. We say that f is positive definite if the kernel f((x + y)/2) is positive definite. We call f negative definite if, for every h > 0, the function e^{-hf} is positive definite. Our first main result is a L\'evy--Khintchine formula (an integral representation) for negative definite functions on arbitrary intervals. For (a,b) = (0,\infty) it generalizes classical results by Bernstein and Horn. On a symmetric interval (-a,a), we call f reflection positive if it is positive definite and, in addition, the kernel f((x - y)/2) is positive definite. We likewise define reflection negative functions and obtain a L\'evy--Khintchine formula for reflection negative functions on all of R. Finally, we obtain a characterization of germs of reflection negative functions on 0-neighborhoods in R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.