Abstract

We investigated in this paper the progression of a shock-wave reflected from a compression corner in a particle-laden gas medium using a TVD class numerical technique and a MacCormack scheme. For a gas-only flow, the numerical results agreed well with the existing experimental data, suggesting that the gas phase is correctively solved. The effect of particle size and mass fraction ratio is investigated for a dilute gas-particle flow. It has been shown that the shock-wave diffraction and the flow configuration after the shock can become remarkably different from the gas-only flow depending on the particle parameters. Relaxation phenomenon due to the momentum drag and the heat exchange between the gas and the particle phases is explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.