Abstract

Machine learning is among the most widely anticipated use cases for near-term quantum computers, however there remain significant theoretical and implementation challenges impeding its scale up. In particular, there is an emerging body of work which suggests that generic, data agnostic quantum machine learning (QML) architectures may suffer from severe trainability issues, with the gradient of typical variational parameters vanishing exponentially in the number of qubits. Additionally, the high expressibility of QML models can lead to overfitting on training data and poor generalisation performance. A promising strategy to combat both of these difficulties is to construct models which explicitly respect the symmetries inherent in their data, so-called geometric quantum machine learning (GQML). In this work, we utilise the techniques of GQML for the task of image classification, building new QML models which are equivariant with respect to reflections of the images. We find that these networks are capable of consistently and significantly outperforming generic ansatze on complicated real-world image datasets, bringing high-resolution image classification via quantum computers closer to reality. Our work highlights a potential pathway for the future development and implementation of powerful QML models which directly exploit the symmetries of data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.