Abstract
Ultra high molecular weight polyethylene has been subject to γ irradiation whilst in contact with a stainless steel backing. This leads to reflection of the incident radiation and to backscattered electrons, both of which contribute to an effective increase in dose received. Radiation induced damage through scission of inter-lamellae tie chains results in an increase in crystallinity. At a nominal received dose of 100kGy the effect of the metal backing is to increase crystallinity by approximately a third relative to the increase observed in materials irradiated in the absence of the backing. The metal backing induced reflections cause a bimodal recrystallization distribution giving rise to a more refined crystal population. As implant materials are subject to intermittent, but high, stress levels it is clearly of importance to examine how these reflection induced structural changes influence mechanical properties. Stress/strain results have indicated that subsequent yielding behavior is governed by the counteracting mechanisms of crystal growth and lamella reorganization mechanisms and in metal backed components the resulting morphological inhomogeneity may have important property consequences for wear induced failures in total knee replacement materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.