Abstract

Diffracted beam interferometry, DBI, (previously referred to as Convergent Beam Electron Diffraction + Electron Biprism Interferometry, CBED+EBI) which uses an electron biprism to deflect diffracted beams (convergent or parallel) can produce an interferogram between any two beams within the information envelope of the microscope such that the beam's amplitude and phase can be measured and studied. As well, the electron source need not be highly coherent. So far, DBI has been applied only to transmission electron diffraction, although there is no reason why it shouldn't be applicable to all electron diffraction methods including reflection high (low) energy electron diffraction, RH(L)EED and, possibly, back-scattered electron diffraction, BSED, in the SEM for the study of surfaces. DBI has already shown that substantial phase information, such as strain at interfaces and dislocations, compositional gradients and small defect clusters which are on the size scale of the unit cell, are retrievable from its holograms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call