Abstract

The response of elastic waves upon encountering the boundary between two elastic media is investigated in the present work. Whereas the top medium is thermoelastic isotropic porous, the below medium is thermoelastic rotating porous diffusive. There is an uncoupled transmitted SV-wave propagating through the medium, and the lower medium is rotating with some fixed angular frequency. When the incident wave hits the boundary, it produces four transmitted waves and five coupled quasi-reflected waves. The system is divided into longitudinal and transverse components using the Helmholtz decomposition theorem. Analytical computations of speed and reflection coefficients for transmitted and reflected waves are performed using LS theory. The outcomes are graphically represented for a particular material subject to nonlocal and fractional-order influences. Wave characteristics, such as speed and reflection coefficients for transmitted and reflected waves, are plotted versus angular frequency and angle of incidence using MATLAB programing. The conservation of energy has also been verified. In the absence of rotation, hall current, voids, viscoelasticity, and diffusion in the medium, the previous results in the literature are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.