Abstract

Compared with body waves, ultrasonic guided waves can provide more local characteristic information about the interface in the defect detection of adhesive structures. In the paper, the expressions of the reflection and transmission coefficients of the lowest SH mode (SH0) in multilayered plate-like adhesive structure were deduced on the basis of wave propagation controlling equations and tangential stiffness coefficient KT was contained in the expressions. Then, the expressions were compared with the previous results to verify their applicability and correctness. Then, aluminum/epoxy resin/aluminum adhesive structures were used to explore the effects of the changes in incident angle, frequency-thickness product and tangential stiffness coefficient on SH wave propagation characteristics in adhesive structures with different interface quality (perfect, weak bonding, and slip/debonding interfaces). The results showed that the propagation mode of SH wave in adhesive structures was mainly determined by the incident angle, frequency, adhesive layer thickness and tangential stiffness coefficient. With the increase in the frequency-thickness product, multi-order resonance is generated in the reflection and transmission coefficient curves of SH wave under the perfect and weak bonding interfaces. If proper values of the incident angle of acoustic waves and frequency-thickness product are selected, the perfect, weak bonding, and slip/debonding interfaces can be differentiated from each other, but the slip and debonding interfaces cannot be distinguished from each other. The study provides theoretical contribution to the detection of multilayered plate-like adhesive structure by SH wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call