Abstract

An extension of Fikioris and Waterman’s formalism is developed in order to describe both the reflection and transmission from a slab-like fluid region in which elastic cylindrical scatterers are randomly placed. The dispersion equation of the coherent wave inside the slab must be solved numerically. For solid cylinders, there is only one solution corresponding to a mean free path of the coherent wave larger than one wavelength. In that case, the slab region may be described as an effective dissipative fluid medium, and its reflection and transmission coefficients may be formally written as those of a fluid plate. For thin hollow shells, a second solution of the dispersion equation is found, at concentrations large enough for the shells to be coupled via the radiation of a circumferential Scholte–Stoneley A wave on each shell. This occurs at a few resonance frequencies of the shells. At those frequencies, then, two different coherent waves propagate in the slab, and it can no longer be considered a dissipating fluid slab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.