Abstract

This paper analyses reflection and refraction of plane waves at a perfect interface between two anisotropic piezoelectric media. The equations of elastic waves, quasi-static electric field, and constitutive relationships for the piezoelectric media are derived. A solution based on the inhomogeneous wave theory is developed to address the inconsistency between the numbers of independent wave modes in the media and the numbers of interfacial boundary conditions to obtain accurate reflection and refraction coefficients in case of strong piezoelectric media, where all the elastic and electric continuity conditions across the interface are satisfied simultaneously. The study shows that there exist independent and zero energy wave modes satisfying the general Snell’s law and propagating along the interface for any incident wave angle. These waves can be treated as pseudo surface waves. It is further found that all the reflection/refraction waves including the pseudo surface waves obey the energy conservation law at the interface boundary. In addition, the analysis also reveals that the reflection and refraction elastic waves can turn into pseudo surface waves at some critical incident angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.