Abstract

Let B denote either of two varieties of order n Pascal matrix, i.e., one whose entries are the binomial coefficients. Let BR denote the reflection of B about its main antidiagonal. The matrix B is always invertible modulo n; our main result asserts that B-1 ≡ BR mod n if and only if n is prime. In the course of motivating this result we encounter and highlight some of the difficulties with the matrix exponential under modular arithmetic. We then use our main result to extend the "Fibonacci diagonal" property of Pascal matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.