Abstract

Reflected entropy is a newly proposed notion in quantum information. It has important implications in holography. In this work, we study the reflected entropy in the framework of the AdS3/WCFT correspondence. We determine the scaling dimensions and charges of various twist operators in non-Abelian orbifold WCFT by generalizing the uniformization map and taking into account of the charge conservation. This allows us to compute the reflected entropy, logarithmic negativity and odd entropy for two disjoint intervals in holographic WCFT. We find that the reflected entropy can be related holographically to the pre-entanglement wedge cross-section, which is given by the minimal distance between the benches in two swing surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.