Abstract

The problem of wave propagation and wave damping in a channel with side porous mattresses of arbitrary shape protruding from the walls is studied. The solution was achieved by applying 3-D boundary element method and was employed to study wave field in the channel and to analyze the effect of the geometry of the mattresses and physical and hydraulic properties of porous material on wave damping. The results show that wave damping in the channel strongly depends on wave parameters, especially, on the wave number. Wave reflection and transmission decrease with increasing the wave number. The results also show that the wave field in the channel strongly depends on the geometry of the mattresses as well as on physical and hydraulic properties of porous material used to build these wave dampers. The geometry of the mattresses and physical and hydraulic properties of porous material have a moderate effect on wave reflection and a significant effect on wave transmission. The results show that wave transmission down the channel decreases with increasing the length and thickness of the mattresses. Moreover, wave transmission decreases with increasing the porosity and damping properties of porous media used to build the mattresses. The analysis shows that porous mattresses protruding from the channel walls are very efficient in damping water waves propagating down the channel and may be built in channels to reduce high waves and achieve desired wave conditions. Theoretical results are in reasonable agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.