Abstract

The use of graphene for fixed-beam reflectarray antennas at Terahertz (THz) is proposed. Graphene's unique electronic band structure leads to a complex surface conductivity at THz frequencies, which allows the propagation of very slow plasmonic modes. This leads to a drastic reduction of the electrical size of the array unit cell and thereby good array performance. The proposed reflectarray has been designed at 1.3 THz and comprises more than 25000 elements of size about λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> /16. The array reflective unit cell is analyzed using a full vectorial approach, taking into account the variation of the angle of incidence and assuming local periodicity. Good performance is obtained in terms of bandwidth, cross-polar, and grating lobes suppression, proving the feasibility of graphene-based reflectarrays and other similar spatially fed structures at Terahertz frequencies. This result is also a first important step toward reconfigurable THz reflectarrays using graphene electric field effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.