Abstract

In the present study, an attempt was made to analyse the reflectance spectra of kimberlites to evaluate its potential as key in remote sensing based spatial mapping. The spectral profiles of kimberlite samples were collected within the visible-near infrared-shortwave infrared (VNIR-SWIR) electromagnetic domain. In this regard, we analysed the reflectance spectra of three kimberlite pipes (having variable mineralogy) of Narayanpet kimberlite field (NKF) based on the comparative analysis of spectral features of kimberlite samples with the spectral features of their dominant constituent minerals. The relative abundances of each of the constituent minerals were confirmed using semiquantitative mineralogical data from X-ray diffraction analysis. This was supplemented with petrographical data as reference. We found that the absorption features imprinted in the reflectance spectra of kimberlites were mineralogically sensitive. These spectral features were imprinted by spectral features of serpentine, olivine, and calcite depending on the relative dominance of these minerals in kimberlites. With regard to understand the spectral behaviour of weathered residue of kimberlite for targeting buried kimberlite, we also attempted a comparative analysis of spectral profiles of in-situ soil developed above the pipes with the spectra of respective kimberlites in NKF area. While comparing aforementioned spectra, it was observed that the spectral signatures of NKF kimberlites were broadly translated to the in-situ soil. Further, we compared the spectral profiles of selected NKF kimberlites with the spectra of three distinct kimberlite pipes of Wajrakarur kimberlite field (WKF) characterised with similar mineralogy with respect to the selected NKF pipes. Relative dominance of constituent minerals (i.e., serpentine, olivine, calcite, etc.) in these pipes was taken as reference to identify the mineralogical similarity of the pipes of both the field. It was observed that the spectral profiles of NKF and WKF kimberlites were highly correlated with regard to wavelength of diagnostic absorption features. Finally, we also made an attempt to understand the effect of spectral mixing, in spectral separation of kimberlites and associated granite-granodiorite gneiss (i.e., Dharwar Gneiss). It was seen that the spectral contrast of kimberlite and gneiss was dependent on the relative size of the pipe with respect to pixel or ground sampling diameter of spectral data acquisition. Study confirmed the diagnostic nature of reflectance spectra of pipes along with their mineralogical sensitiveness and spatial integrity. It also highlighted how spectral mixing can influence the spectral feature based remote detection of kimberlites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.