Abstract

The reflectance, solar absorptivity (alpha), and the total normal and hemispherical emissivity (epsilonNu and epsilon) of evaporated aluminum coated with SiO(2) films of various thicknesses were determined. High vacuum evaporation with an electron gun was used for preparing uv transparent undecomposed films of SiO(2) up to thicknesses of more than 3.5 micro Because of their hardness, chemical stability, and excellent adherence, evaporated SiO(2) films were found to be very suitable as protective layers for aluminum front surface mirrors, especially if high reflectance in the uv is required. alpha of SiO(2)-coated Al was determined to be about 11 % and to be essentially independent of the SiO(2) thickness, whereas epsilonNu and epsilon increased with increasing oxide thickness, and reached values of 0.62 and 0.55, respectively, for a SiO(2) thickness of 3.75 micro. Films of this type are, therefore, suitable as surface layers for controlling the temperature of satellites in orbit. Ultraviolet irradiation in vacuum at one and five times the equivalent solar energy decreased the uv and visible reflectance of SiO(2)-coated Al. The effect of this reflectance decrease on alpha/epsilon and on the temperature of an orbiting satellite is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.