Abstract

This paper compares the structural design of two organic biosensors that minimize power consumption in wireless photoplethysmogram (PPG) waveform monitoring. Both devices were fabricated on the same substrate with a red organic light-emitting diode (OLED) and an organic photodiode (OPD). Both were designed with a circular OLED at the center of the device surrounded by OPD. One device had an OLED area of 0.06 cm2, while the other device had half the area. The gap distance between the OLED and OPD was 1.65 mm for the first device and 2 mm for the second. Both devices had an OPD area of 0.16 cm2. We compared the power consumption and signal-to-noise ratio (SNR) of both devices and evaluated the PPG signal, which was successfully collected from a fingertip. The reflectance-based organic pulse meter operated successfully and at a low power consumption of 8 µW at 18 dB SNR. The device sent the PPG waveforms, via Bluetooth low energy (BLE), to a PC host at a maximum rate of 256 kbps data throughput. In the end, the proposed reflectance-based organic pulse meter reduced power consumption and improved long-term PPG wireless monitoring.

Highlights

  • A pulse meter is a device used to measure the rate of rhythmic contraction and expansion of an artery at each beat of the heart based on the photoplethysmogram (PPG) principle

  • SPS, 8-bit from the and used to evaluate both devices. Figure shows that both devices were reliablewere and resolution from the serial communication block (SCB) and used to evaluate both devices

  • The PPG signal was sent to a PC host using a universal serial bus (USB) dongle

Read more

Summary

Introduction

A pulse meter is a device used to measure the rate of rhythmic contraction and expansion of an artery at each beat of the heart based on the photoplethysmogram (PPG) principle. It has received enormous attention over the past decade, primarily from the healthcare industry, due to its continuous, real-time, and noninvasive monitoring, which provides the information necessary to determine an individual’s health status and even provide a preliminary medical diagnosis [1,2,3]. The blood volume of the arteries changes and causes variable light absorption, allowing changes in reflected light to be detected as a PPG signal. The detected PPG signal comprises an alternating (AC) component, due to the variable absorption of the pulsatile arterial blood, and a steady-state (DC)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.