Abstract

BackgroundComputational inference of transcriptional regulatory networks remains a challenging problem, in part due to the lack of strong network models. In this paper we present evolutionary approaches to improve the inference of regulatory networks for a family of organisms by developing an evolutionary model for these networks and taking advantage of established phylogenetic relationships among these organisms. In previous work, we used a simple evolutionary model and provided extensive simulation results showing that phylogenetic information, combined with such a model, could be used to gain significant improvements on the performance of current inference algorithms.ResultsIn this paper, we extend the evolutionary model so as to take into account gene duplications and losses, which are viewed as major drivers in the evolution of regulatory networks. We show how to adapt our evolutionary approach to this new model and provide detailed simulation results, which show significant improvement on the reference network inference algorithms. Different evolutionary histories for gene duplications and losses are studied, showing that our adapted approach is feasible under a broad range of conditions. We also provide results on biological data (cis-regulatory modules for 12 species of Drosophila), confirming our simulation results.

Highlights

  • Transcriptional regulatory networks are models of the cellular regulatory system that governs transcription

  • In previous work [11], we presented two refinement algorithms, both based on phylogenetic information and using a likelihood framework, that boost the performance of any chosen network inference method

  • Average performance for the base inference algorithm (DBI) and for the two refinement algorithms over 10 runs for these two experiments is shown in Fig. 1 using receiveroperator characteristic (ROC) curves

Read more

Summary

Results

We extend the evolutionary model so as to take into account gene duplications and losses, which are viewed as major drivers in the evolution of regulatory networks. We show how to adapt our evolutionary approach to this new model and provide detailed simulation results, which show significant improvement on the reference network inference algorithms. Different evolutionary histories for gene duplications and losses are studied, showing that our adapted approach is feasible under a broad range of conditions. We provide results on biological data (cis-regulatory modules for 12 species of Drosophila), confirming our simulation results

Introduction
Background
Results and analysis
Conclusions and future work
15. Murphy KP
27. Hillis DM

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.