Abstract

We study new classes of overpartitions of numbers based on the properties of non-overlined parts. Several combinatorial identities are established by means of generating functions and bijective proofs. We show that our enumeration function satisfies a pair of infinite Ramanujantype congruences modulo 3. Lastly, by conditioning on the overlined parts of overpartitions,we give a seemingly new identity between the number of overpartitions and a certain class of ordinary partition functions. A bijective proof for this theorem also includes a partial answer to a previous request for a bijection on partitions doubly restricted by divisibility and frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.