Abstract

BackgroundOrthologues are genes in different species that are related through divergent evolution from a common ancestor and are expected to have similar functions. Many databases have been created to describe orthologous genes based on existing sequence data. However, alternative splicing (in eukaryotes) is usually disregarded in the determination of orthologue groups and the functional consequences of alternative splicing have not been considered. Most multi-exon genes can encode multiple protein isoforms which often have different functions and can be disease-related. Extending the definition of orthologue groups to take account of alternate splicing and the functional differences it causes requires further examination.ResultsA subset of the orthologous gene groups between human and mouse was selected from the InParanoid database for this study. Each orthologue group was divided into sub-clusters, at the transcript level, using a method based on the sequence similarity of the isoforms. Transcript based sub-clusters were verified by functional signatures of the cluster members in the InterPro database. Functional similarity was higher within than between transcript-based sub-clusters of a defined orthologous group. In certain cases, cancer-related isoforms of a gene could be distinguished from other isoforms of the gene. Predictions of intrinsic disorder in protein regions were also correlated with the isoform sub-clusters within an orthologue group.ConclusionsSub-clustering of orthologue groups at the transcript level is an important step to more accurately define functionally equivalent orthologue groups. This work appears to be the first effort to refine orthologous groupings of genes based on the consequences of alternative splicing on function. Further investigation and refinement of the methodology to classify and verify isoform sub-clusters is needed, particularly to extend the technique to more distantly related species.

Highlights

  • Orthologues are genes in different species that are related through divergent evolution from a common ancestor and are expected to have similar functions

  • Functional annotations Orthologue groups that were sub-clustered were verified for functional consistency by using InterProScan to identify signatures in the sequences

  • The results shown here demonstrate that many orthologous gene groups are comprised of sets of isoforms that have detectable differences in functional attributes

Read more

Summary

Introduction

Orthologues are genes in different species that are related through divergent evolution from a common ancestor and are expected to have similar functions. Most multi-exon genes can encode multiple protein isoforms which often have different functions and can be disease-related. Extending the definition of orthologue groups to take account of alternate splicing and the functional differences it causes requires further examination. Orthologous genes are related to each other through divergent evolution from a common ancestor and so are expected to have similar functions. It has been shown that different protein isoforms generated by alternative splicing can have diverse functional properties, such as binding characteristics, subcellular localisation or enzymatic activity [6] or have altered structural properties [6] or tissue specificity [3]. Inappropriate expression of an alternate isoform of a gene can be a significant cause of disease [7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call