Abstract

Nonequilibrium information thermodynamics determines the minimum energy dissipation to reliably erase memory under time-symmetric control protocols. We demonstrate that its bounds are tight and so show that the costs overwhelm those implied by Landauer’s energy bound on information erasure. Moreover, in the limit of perfect computation, the costs diverge. The conclusion is that time-asymmetric protocols should be developed for efficient, accurate thermodynamic computing. And, that Landauer’s Stack—the full suite of theoretically-predicted thermodynamic costs—is ready for experimental test and calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.