Abstract

Prior research on financial analyst’ quarterly earnings forecasts has documented serial correlation in forecast errors. This paper examines the way serial correlation in quarterly earnings forecast errors varies with firm and analyst attributes such as the firm’s industry and the analyst’s experience and brokerage house affiliation. Finding that serial correlation in forecast errors is significant and seemingly independent of firm and analyst attributes, I model consensus forecast errors as an autoregressive process. I demonstrate that the model of forecast errors that best fits the data is AR(1), and use the obtained autoregressive coefficients to predict consensus forecast errors. Modeling the consensus forecast errors as an autoregressive process, the present study predicts future consensus forecast errors, and proposes a series of refinements to the consensus. These refinements were not presented in prior literature, and can be useful to financial analysts and investors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.