Abstract

Collective variables are used often in many enhanced sampling methods, and their choice is a crucial factor in determining sampling efficiency. However, at times, searching for good collective variables can be challenging. In a recent paper, we combined time-lagged independent component analysis with well-tempered metadynamics in order to obtain improved collective variables from metadynamics runs that use lower quality collective variables [ McCarty, J.; Parrinello, M. J. Chem. Phys. 2017 , 147 , 204109 ]. In this work, we extend these ideas to variationally enhanced sampling. This leads to an efficient scheme that is able to make use of the many advantages of the variational scheme. We apply the method to alanine-3 in water. From an alanine-3 variationally enhanced sampling trajectory in which all the six dihedral angles are biased, we extract much better collective variables able to describe in exquisite detail the protein complex free energy surface in a low dimensional representation. The success of this investigation is helped by a more accurate way of calculating the correlation functions needed in the time-lagged independent component analysis and from the introduction of a new basis set to describe the dihedral angles arrangement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.