Abstract

Padmanabhan elucidated the concept of super radiance in black hole physics which would lead to loss mass of a black hole, and loss of angular momentum due to space-time infall of material into a black hole. As Padmanabhan explained it, to avoid super radiance, and probable break down of black holes, from in fall, one would need in fall material frequency, divided by mass of particles undergoing in fall in the black hole to be greater than the angular velocity of the black hole event horizon in question. We should keep in mind we bring this model up to improve the chance that Penrose’s conformal cyclic cosmology will allow for retention of enough information for preservation of Planck’s constant from cycle to cycle, as a counterpart to what we view as unacceptable reliance upon the LQG quantum bounce and its tetrad structure to preserve memory. In addition, we are presuming that at the time of z = 20 in red shift that there would be roughly about the same order of magnitude of entropy as number of operations in the electro weak era, and that the number of operations in the z = 20 case is close to the entropy at redshift z = 0. Finally, we have changed Λ with the result that after redshift = 20; there is a rapid collapse to the present-day vacuum energy value i.e. by z = 12 the value of the cosmological constant, Λ likely being the same, today, as for what it was when z = 12. And z = 12 is the redshift value about when Galaxies form.

Highlights

  • As Padmanabhan explained it, to avoid super radiance, and probable break down of black holes, from in fall, one would need in fall material frequency, divided by mass of particles undergoing in fall in the black hole to be greater than the angular velocity of the black hole event horizon in question

  • We should keep in mind we bring this model up to improve the chance that Penrose’s conformal cyclic cosmology will allow for retention of enough information for preservation of Planck’s constant from cycle to cycle, as a counterpart to what we view as unacceptable reliance upon the LQG quantum bounce and its tetrad structure to preserve memory

  • Appendix A outlines how we view the well intentioned LQG memory preservation program and the alternative, a refinement of the conformal cyclic cosmology program of Penrose which will make use of refining the concept of super radiance and how to avoid it, so as to heighten the chance of preserving cosmological “memory” from one cycle of creation to another one of the candidates for memory transfer given by data as supplied by Natarajan in GR 20 in pre galactic black holes formed at about z = 20 to z = 12 times by super massive black holes at least 500 times the mass of our star, Sol

Read more

Summary

Introduction

Appendix A outlines how we view the well intentioned LQG memory preservation program and the alternative, a refinement of the conformal cyclic cosmology program of Penrose which will make use of refining the concept of super radiance and how to avoid it, so as to heighten the chance of preserving cosmological “memory” from one cycle of creation to another one of the candidates for memory transfer given by data as supplied by Natarajan in GR 20 in pre galactic black holes formed at about z = 20 to z = 12 (red shift) times by super massive black holes at least 500 times the mass of our star, Sol. The candidate for information inflow into the initially massive black holes as we choses it would be manifest in relic gravitational waves. 3. Information as Given in Space-Time Infall into Early Universe Black Holes and the Problem of Avoiding Super-Radiance

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call