Abstract
A quasi-chemical model for illites has been derived, and local electrostatic balance has been added to a random regular solution site-mixing model for illites ( Stoessell, 1979). Each model assumes similar order-disorder conditions for both the end-members micas and the solid solution. Thermodynamic properties of illites predicted by the random, electrostatic, and quasi-chemical models are compared as a function of composition. For natural illite compositions, molar entropies of mixing in the electrostatic model are about 1 entropy unit less than those in the random model. Intermediate values are given by the quasi-chemical model. Each model predicts an increased entropy of mixing in dominantly trioctahedral illites as compared to dioctahedral illites. Each model also predicts destabilization of trioctahedral illites using absolute molar exchange energies greater than 2 RT/ Z x , where Z x is the number of adjacent cation interactions per site in the Xth site class. The most negative free energies of mixing are predicted by the quasi-chemical model. Intermediate values predicted by the random model are apparently the result of error cancellation due to overestimation of both the entropy and enthalpy of mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.