Abstract

Water-filtered infrared A (wIRA) alone or in combination with visible light (VIS) exerts anti-chlamydial effects in vitro and in vivo in acute infection models. However, it has remained unclear whether reduced irradiation duration and irradiance would still maintain anti-chlamydial efficacy. Furthermore, efficacy of this non-chemical treatment option against persistent (chronic) chlamydial infections has not been investigated to date. To address this knowledge gap, we evaluated 1) irradiation durations of 5, 15 or 30min in genital and ocular Chlamydia trachomatis acute infection models, 2) irradiances of 100, 150 or 200mW/cm2 in the acute genital infection model and 3) anti-chlamydial activity of wIRA and VIS against C. trachomatis serovar B and E with amoxicillin (AMX)- or interferon γ (IFN-γ)-induced persistence. Reduction of irradiation duration reduced anti-chlamydial efficacy. Irradiances of 150 to 200mW/cm2, but not 100mW/cm2, induced anti-chlamydial effects. For persistent infections, wIRA and VIS irradiation showed robust anti-chlamydial activity independent of the infection status (persistent or recovering), persistence inducer (AMX or IFN-γ) or chlamydial strain (serovar B or E). This study clarifies the requirement of 30min irradiation duration and 150mW/cm2 irradiance to induce significant anti-chlamydial effects in vitro, supports the use of irradiation in the wIRA and VIS spectrum as a promising non-chemical treatment for chlamydial infections and provides important information for follow-up in vivo studies. Notably, wIRA and VIS exert anti-chlamydial effects on persistent chlamydiae which are known to be refractory to antibiotic treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call