Abstract

The main limitation in NMR-determined structures of nucleic acids and their complexes with proteins derives from the elongated, non-globular nature of physiologically important DNA and RNA molecules. Since it is generally not possible to obtain long-range distance constraints between distinct regions of the structure, long-range properties such as bending or kinking at sites of protein recognition cannot be determined accurately nor precisely. Here we show that use of residual dipolar couplings in the refinement of the structure of a protein-RNA complex improves the definition of the long-range properties of the RNA. These features are often an important aspect of molecular recognition and biological function; therefore, their improved definition is of significant value in RNA structural biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.