Abstract

The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0 K, n = 21.24 nm(-3)) and (T = 23.0 K, n = 24.61 nm(-3)), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8 nm(-1). At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ∼ 20.0 nm(-1) para-hydrogen provides a test case for improved approximations to quantum dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.