Abstract
This paper presents a refinement in the residual resistance formulation used in pollution flashover model. The proposed study focused on the residual resistance calculation of the AR or open model which used the expression of the insulator factor form. The proposed modification takes into account the non-uniformity of the current density distribution inducted by the open model which is increased by the presence of the arc root at the pollution surface. A correction factor was determined based on experimental and numerical investigations. The numerical simulations confirm that the constriction and the distribution of the current lines along the open model have a significant influence on the residual resistance calculation. The proposed corrected residual resistance formulation was then implemented in a dynamic mathematical model in order to determine the critical flashover voltage (FOV) of different cap-and-pin insulators for different pollution layer levels. The results obtained with the proposed flashover model and its corrected resistance formulation show a very good agreement with the theoretical and experimental results obtained from the literature. This validates the propose refinement of the residual resistance dedicated to polluted flashover model and provide a powerful tool for insulator dimensioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.