Abstract

This paper presents a rapid refinement procedure capable of deriving the stable conformation of a macromolecule from experimental model co-ordinates. All the degrees of freedom of the molecule are allowed to vary and all parts of the structure are refined simultaneously in a general force-field. The procedure has been applied to myoglobin and lysozyme. The deviations of peptide bonds from planar conformation and of various bond angles from their respective average values are found to contribute significantly to the refined protein conformation. Hydrogen atoms are not included in the present refinement. A set of non-bonded potential functions, applicable to the equilibrium of a folded protein in an aqueous medium, is described and tested on myoglobin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.