Abstract

s: The semi-solid slurry of Al-25%Si hypereutectic aluminum alloy was prepared through a copper serpentine pouring channel, the effect of pouring temperature and numbers of channel bend on the slurry microstructure was investigated. The results show that the primary silicon grains in Al-25%Si hypereutectic alloy solidified at a traditional condition are very large and the average silicon grain size is about 65.3μm, however, when the liquid Al-25%Si alloy is poured through a copper serpentine pouring channel, the primary silicon grains are fined obviously. If the channel has three bends and the pouring temperature is 747°C,the average silicon grain size in the slurry is about 33.7μm. If the channel has four bends and the pouring temperature is 747°C, the average silicon grain size in the slurry is about 30.9μm. If the channel has seven bends and the pouring temperature is 747°C, the average silicon grain size in the slurry is about 28.6μm. The analysis shows that the chilling effect of the inner channel wall precipitates primary silicon nuclei, and so the primary silicon grains of Al-25%Si alloy are fined greatly. Meanwhile, the subsequent washing of the alloy melt also promotes the separation of primary silicon grains from the inner wall and the primary silicon grains are further fined. The above research work demonstrates eventually that the copper serpentine pouring channel process is a good method for fining the primary silicon grains in hypereutectic Al-25%Si alloy rather than using chemical fining agent phosphorus as in traditional process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call