Abstract

Frequency estimation is a fundamental problem in many areas. The previously proposed q -shift estimator (QSE), which interpolates the discrete Fourier transform (DFT) coefficients by a factor of q , enables the estimation accuracy to approach the Cramer-Rao lower bound (CRLB). However, it becomes less effective when the number of samples is small. In this letter, we provide an in-depth analysis to unveil the impact of q on the convergence of QSE, and derive the bounds of a refined region of q that ensures the convergence of QSE to the CRLB even with a small number of samples. Simulations validate our analysis, showing that the refined interpolation factor is able to reduce the estimation mean squared error of QSE by up to 13.14 dB when the sample number is as small as 8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.