Abstract
AbstractReconstructing 3D hair is challenging due to its complex micro‐scale geometry, and is of essential importance for the efficient creation of high‐fidelity virtual humans. Existing hair capture methods based on multi‐view stereo tend to generate results that are noisy and inaccurate. In this study, we propose a refinement method for hair geometry by incorporating the gradient of strands into the computation of their position. We formulate a gradient integration strategy for hair strands. We evaluate the performance of our method using a synthetic multi‐view dataset containing four hairstyles, and show that our refinement produces more accurate hair geometry. Furthermore, we tested our method with a real image input. Our method produces a plausible result. Our source code is publicly available at https://github.com/elerac/strand_integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.