Abstract
Given any linear stationary iterative methods in the form z^(i+1)=Jz^(i)+f, where J is the iteration matrix, a significant improvements of the iteration matrix will decrease the spectral radius and enhances the rate of convergence of the particular method while solving system of linear equations in the form Az=b. This motivates us to refine the Extended Accelerated Over-Relaxation (EAOR) method called Refinement of Extended Accelerated Over-Relaxation (REAOR) so as to accelerate the convergence rate of the method. In this paper, a refinement of Extended Accelerated Over-Relaxation method that would minimize the spectral radius, when compared to EAOR method, is proposed. The method is a 3-parameter generalization of the refinement of Accelerated Over-Relaxation (RAOR) method, refinement of Successive Over-Relaxation (RSOR) method, refinement of Gauss-Seidel (RGS) method and refinement of Jacobi (RJ) method. We investigated the convergence of the method for weak irreducible diagonally dominant matrix, matrix or matrix and presented some numerical examples to check the performance of the method. The results indicate the superiority of the method over some existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.