Abstract

We propose a new iterative workflow based on cross-correlation for improved arrival-time picking on microseismic data. In this workflow, signal-to-noise ratio (S/N) and polarity weighted stacking are used to minimize the effect of S/N and polarity fluctuations on the pilot waveform computation. We use an exhaustive search technique for polarity estimation through stack power maximization. We use pseudo-synthetic and real microseismic data from western Canada in order to demonstrate the effectiveness of proposed workflow relative to Akaike information criterion (AIC) and a previously published cross-correlation based method. The pseudo-synthetic microseismic waveforms are obtained by introducing Gaussian noise and polarity fluctuations into waveforms from a high S/N microseismic event. We find that the cross-correlation based approaches yield more accurate arrival-time picks as compared to AIC for low S/N waveforms. AIC is not affected by waveform polarities as it works on individual receiver levels whereas the accuracy of existing cross-correlation method decreases in spite of using envelope correlation. We show that our proposed workflow yields better and consistent arrival-time picks regardless of waveform amplitude and polarity variations within the receiver array. After refinement, the initial arrival-time picks are located closer to the best estimated manual picks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.