Abstract
Gas pumping units with gas turbine units (GTU) are widely used in gas transmission systems. In recent decades, GTUs are increasingly used in power generation at thermal power plants. The efficiency and reliability of a gas turbine plant largely depend on the quality of air preparation. Integrated air cleaning devices (KVOU) as part of the air intake duct of the GTU have stages of coarse and fine air purification and rather large dimensions. The possibility of using a battery cyclonefilter with cleaning elements, in which both stages of cleaning are combined, in the design of the KVOU is considered. Numerical studies of the movement of a two-phase flow in a multicyclone, which is a model of the first 2 rows of a serial multicyclone, have been carried out. The first two rows of the serial multicyclone TsB-16 of the Biysk boiler plant, consisting of 16 cyclone elements 245 mm in diameter with a semi-coil gas supply, were taken as the initial geometric model. The geometric model was built using the Gambit preprocessor: a two-dimensional 2D model and a finite element mesh based on square elements were built. The finite element mesh of the numerical model generated in the Gambit program was exported to the solver of the ANSYS Fluent software package. Using the methods of computational hydrodynamics, the nature of the movement of a dusty flow in a battery cyclone with a corridor arrangement of cyclone elements has been investigated, their most effective placement has been determined, which provides the maximum inertial capture of suspended particles, in accordance with which a localization scheme for semi-coil entrances to treatment elements has been determined. In numerical studies, the aerodynamic characteristics of the dispersed flow in the multicyclone body are obtained. In accordance with the results of numerical studies, the efficiency of inertial sedimentation of suspended particles from the flow in the first row of elements was 36%, in the second row — 99%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.