Abstract
Since most models used to study neuronal dysfunction display disadvantages and ethical concerns, a fast and reproducible in vitro model to study mitochondria-related neurodegeneration is required. Here, we optimized and characterized a 3-day retinoic acid-based protocol to differentiate the SH-SY5Y cell line into a neuronal-like phenotype and investigated alterations in mitochondrial physiology and distribution. Differentiation was associated with p21-linked cell cycle arrest and an increase in cell mass and area, possibly associated with the development of neurite-like extensions. Notably, increased expression of mature neuronal markers (neuronal-specific nuclear protein, microtubule-associated protein 2, βIII tubulin and enolase 2) was observed in differentiated cells. Moreover, increased mitochondrial content and maximal area per cell suggests mitochondrial remodeling. To demonstrate that this model is appropriate to study mitochondrial dysfunction, cells were treated for 6 h with mitochondrial toxicants (rotenone, antimycin A, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) and 6-hydroxydopamine (6-OHDA)). Differentiated cells were more susceptible to increasing concentrations of FCCP, antimycin A, and rotenone, while 6-OHDA showed a distinct dose-dependent neurotoxicity pattern. Even though differentiated cells did not exhibit a fully mature/differentiated neuronal phenotype, the protocol developed can be used to study neurotoxicity processes, mitochondrial dynamics, and bioenergetic impairment, representing an alternative to study mitochondrial impairment-related pathologies in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.