Abstract
In 2010 the Cawthron Institute adopted AOAC official method 2005.06 (Lawrence method) for regulatory testing of paralytic shellfish toxins. This included adapting the method to a UPLC format and developing a rapid periodate screen to eliminate the vast majority of samples with no PSTs present. The method gained New Zealand regulatory approval and has since been used to test >2000 samples. Soon after implementation a major HAB of the toxic dinoflagellate Alexandrium catenella occurred in a prime shellfish growing area of New Zealand. This event was the most serious to date in this country with extremely high cell concentrations observed in some locations (>4×106cellsL−1). Toxin levels observed in Greenshell™ mussels (Perna canaliculus) and Flat oysters (Ostrea chilensis) exceeded the regulatory level of 0.8mg/kg shellfish meat as saxitoxin equivalents. Closures of commercial shellfish harvesting areas were enforced for a period of up to three months as toxin levels remained above the regulatory level for an extended period, even after the bloom had crashed.Analysis of several hundred positive shellfish samples during this event allowed us to better understand the technical performance of the method during a bloom event. The periodate screen substantially overestimated the true PST level in the samples because several PSTs gave co-eluting oxidation products, and it was assumed that the entire peak was due to the presence of the more toxic congener. The ratio between the screen and confirmation test results remained relatively constant throughout the bloom events. This information supports an amendment to the overly conservative regulatory control scheme employed in New Zealand for PST testing. Despite overestimation, the periodate screen has proved highly useful as it allows a quick determination of PST-free samples and provides a high level of security against harvesting contaminated products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.