Abstract

Ice cover is a natural phenomenon unique to rivers in cold regions, and its existence is one of the reasons for the collapse of structural foundations of bridge piers across rivers. In order to understand the influence of different scouring environments on the hydrodynamics and sand bed morphology in the local scour holes around bridge pier foundations, this paper simulates the dynamic evolution process of the local scouring of tandem combination piers under open-flow and ice-cover environments, based on a turbulence model using the Reynolds-averaged Navier Stokes (RANS) method and a sediment transport model considering the slope collapse effect, respectively. This study also takes the vortex flow and shear stress distribution at different characteristic moments of the pier perimeter section as the penetration point to analyze the effect of the influence law of the scouring environment on the morphology and relative time scale of the scour hole, and makes a detailed comparison with the results of the indoor flume test. The results of this study show that: for local scouring in open-flow conditions, sediment initiation is doubly inhibited and the hydrodynamic forces in the scouring hole are weakened; the local scouring caused by ice cover contributes to the total scouring of the submerged pier within its coverage area, which significantly increases the depth and range of the local scouring hole; and, although the interaction of turbulent eddies and shear stress on the pier side is the main dynamic mechanism of the scouring generated around the pier, the two have a strong correlation. The results of this study, obtained by accurately quantifying the amount of eddies and shear stress around the pier, are the basis for the reasonable estimation of the maximum local scouring depth, which can provide a reference for the study of the evolution of the riverbed around submerged structures in cold areas and is essential to avoid structural damage to the piers and reduce the economic loss of traffic..

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call