Abstract
Semantic segmentation is always a key problem in remote sensing image analysis. Especially, it is very useful for city-scale vehicle detection. However, multi-object and imbalanced data classes of remote sensing images bring a huge challenge, which leads that many traditional segmentation approaches were often unsatisfactory. In this paper, we propose a novel Refined Semantic Segmentation Network (R2SN), which apply the classic encoder-to-decoder framework to handle segmentation problem. However, we add the convolution layers in encoder and decoder to make the network can achieve more local information in the training step. The design is more suitable for high-resolution remote sensing image. More specially, the classic Focal loss is introduced in this network, which can guide the model focus on the difficult objects in remote sensing images and effectively handle multi-object segmentation problem. Meanwhile, the classic Hinge loss is also utilized to increase the distinction between classes, which can guarantee the more refined segmentation results. We validate our approach on the International Society for Photogrammetry and Remote Sensing (ISPRS) semantic segmentation benchmark dataset. The evaluation and comparison results show that our method exceeds the state-of-the-art remote sensing image segmentation methods in terms of mean intersection over union (MIoU), pixel accuracy, and F1-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.