Abstract
We study sets of measure-preserving transformations on Lebesgue spaces with continuous measures taking into account extreme scales of variations of weak mixing. It is shown that the generic dynamical behaviour depends on subsequences of time going to infinity. We also present corresponding generic sets of (probability) invariant measures with respect to topological shifts over finite alphabets and Axiom A diffeomorphisms over topologically mixing basic sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.